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ABSTRACT

Various organocatalysts have been designed based on molecular recognition to catalyze the asymmetric direct aldol reaction of ketones with
aryl and alkyl a-keto acids, affording B-hydroxyl carboxylic acids with a tertiary stereogenic center with excellent enantioselectivities of up
to 98% ee. A linear effect was observed for the reaction, demonstrating a single molecule of the catalyst involved in the catalysis.

The aldol reaction is one of the most important carbon— related with ketones as acceptors were rarely reported and
carbon bond-forming reactions in organic synthesis and hasthus are even more challenging. Recently,-aroline-

been studied extensivelySince the seminal findings that
L-proline could catalyze the direct aldol reactfohmany

catalyzed direct aldol reaction afketo esters with aldehydes
was reported? In this case, only two specifie-keto esters,

chiral organocatalysts have been discovered for the directwhich contain two highly electron-withdrawing groups to

aldol reactiort™1° In contrast to organocatalyzed direct

aldolizations with aldehydes as acceptors, however, those (4) For reviews, see: (a) List, Bietrahedror2002,58, 5573. (b) List,

B. Synlett2001, 1675. (c) Alcaide, B.; Almendros, Rngew. Chemlnt.
Ed. 2003,42, 858. (d) List, BAcc. Chem. Re004,37, 548. (e) Notz,
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N.; List, B. Angew. Chem.nt. Ed. 2003,42, 2785. (j) Northrup, A. B.;
Mangion, |. K.; Hettche, F.; MacMillan, D. W. GAngew. ChemInt. Ed.
2004, 43, 2152. (k) Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.;
Cordova, A.Angew. Chemlnt. Ed. 2005,44, 1343.
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activate the keto function, were investigated as aldol accep-search for structurally diverse organocatalysts, we recently
tors* Most recently, the proline-catalyzed asymmetric aldol found that_-prolinamide derivatives catalyzed the direct aldol
reaction between cyclohexanone and phenylglyoxylate wasreaction via enamine catalysi§timulated by these findings
discovered? However, the organocatalyzed asymmetric aldol and Hamilton’s molecular recognition modebf carboxylic
reaction of ketone with keto acids has not been reported yet.acid with aminopyrodine (Figure 1), we reasoned that the
We report here the direct aldol reaction of ketones with combination of pyrrolidine-2-carboxylic acid amide and
a-keto acids catalyzed by an organic molecule to directly aminopyrodine in a single molecule could lead to a kind of
form f-hydroxy carboxylic acids with a tertiary stereogenic chiral organocatalyst8a—g, and they would catalyze the
center with high enantioselectivities of up to 98% ee. direct aldol reaction of ketone witle-keto acids via a
Molecular recognition phenomena are critically important possible transition stata or 2b (Figure 1). Principally2a
in the actions of enzymes on substrates. A large number ofwould be more stable tha2b.!” But 2b would more easily
enzyme-mimetic systems such as crown etkergyptands;? occur with the aldol reaction th&ta because the keto group
cyclodextrinsl> and capsulé8 have been designed as in 2bis activated by a hydrogen bofid.
artificial receptor sites to bind appropriate guest molecules It was found that prolinamide3a—g were highly catalyti-
or ions. Since the pioneering finding by Hamilton and co- cally active for the direct aldol reaction of acetone with
workers that aminopyridine is a good site for the formation benzoylformic acid4a) to generate an aldol produsa that
of hydrogen bonds specifically with a carboxyl group (  directly reacted with CkN, to give 6a for the convenient
Figure 1)} aminopyridine has been widely used in the self- HPLC analysis(Table 1). In the presence of 20 mol % of

Table 1. Direct Aldol Reaction of Acetone and Benzoylformic
Acid Catalyzed by Organocataly3a—g

0 o o o
20 mol % 3 H
A o coon —— MPSOR% L_Teoome
4a Toluene, 0°C 5a Ph
6a
entry catalyst® 4 yield (%)° ee (%)

1 3a 4a 98 87

2 3b 4a 86 79

3 3c 4a 86 87

4 3d 4a 90 90

Figure 1. General strategy for the design of new organocatalysts 3 Se 4a 99 92
3. 6 3f 4a >99 90
7 3g 4a 30 74

8 3h 4a 22 -9

9 e 4a >99 934

assembl¥? and molecular recognition of carboxylic acits. A mixture of b formic acid (0.5 ), catalyst (0.1 ), and
S mixture or benzoyltormic aci .0 mMmol), catalys .1 mmol), an
Molecular recognition has also been found as one of the acetone (1.0 mL) in toluene (2.0 mL) was stirred for 48 solated yield

factors to design organocatalysts for other reacti®hsour of 6a.¢The ee value oba and was determined by chiral HPL&The
reaction was performed in toluene (3.0 mL)

(9) (@) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.;
Jiang, Y.-Z.; Wu, Y.-D.J. Am. Chem. SoQ003,125, 5262. (b) Tang, Z;
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affected the catalytic performance (entry 7). However, || NNERNEENENEGGEE

catalyst3h derived from 3-aminopyridine, which is princi-

pally unable to form double hydrogen bonds with the

substrate, catalyzed the direct aldol reaction of acetone with a b ¢

benzoylformic acid in very low yield (22%) and enantiose-

lectivity (—9% ee) with a reversed configuration (Table 1,

entry 8), which demonstrates the importance of the double ‘ ’

hydrogen bonds and that the reaction very likely proceeds L '

via the transition stat@. Fine-tuning the ratio of toluene to et

acetone resulted in the high,es'[_ Ievgl of enantioselgc'ﬂ\/ity Figure 2. ITHNMR spectra of mixtures of racemic mandelic acid

(93% ee) and a nearly quantitative yield for the reaction of with different host molecules: (a) racemic mandelic acid and

acetone and benzoylformic acid catalyzed3sy(entry 9). receptor3e; (b) racemic mandelic acid and receptor Gez-and
The aldolization of methyl benzoylformic ester (4b) with  (c) racemic mandelic acid and recep8gir.

acetone in the presence 34 however, yieldedain a 28%

yield with poor enantioselectivity (eq 1), implying that the

interaction between carboxylic acid and pyridinyl group is @lso observed with Cb3e as a receptor (peak b). On the

important for the reaction and a single hydrogen bond is not contrary, two enantiomers could not be distinguished by

efficient enough to activate the keto group. The use of ‘HNMR spectroscopy witBh as a host peak c). The racemic

L-proline amide3i, which is unable to provide a proton to  aldol producbawas also recognized [8ebased otHNMR

form the hydrogen bond, to catalyze the aldol reaction of SPectroscopy of the mixture 8eand2a (see the Supporting

4awith acetone gavBain a trace amount (eq 2), indicating Information). These facts also implied that éieketo group

that the hydrogen bond formed between the keto and amideOf the acceptor was interacting with the proline amide, and

exists and p|ays a Crucia' role in promoting the reaction_ the transition structur@b is therefore more pOSSible than

Thus, this organocatalyzed reaction proceeds more likely via 22 ) )
2b rather thar2a. A linear effect was observed for the reaction of benzoyl-

formic acid @a) with acetone with 20 mol % &ein toluene
(Figure 3). This result is consistent with the proposed

)Cf\ j\ 20 mol % 3e O Ooome
. e,
a1 Toene, 0 o I
4b 48 h 6a (1)
28% yield, 19% ee
D—(O lm i 2
N -t R®=0.998
H_Et
o 9 (263 I 1%) 0 oh
mol% OOH
v oA N el 2
)J\ Ph 4a COOH Toluene, 0°C )j\sfl:’h
48h trace amount

Despite the preceding positive evidence to support our
proposed transition structug for the aldol reaction, more
evidence is still required. Recently, chiral molecules either 20 40 60 80 100
bearing multiple hydrogen-bond dondrsor containing -20 - Ee of3e
pyrrolidinyl?2 and pyridinyl group$? which are similar to
the building blocks of organocataly®shave been designed
for the enantiomeric recognition of mandelic acid. The mul-
tiple hydrogen bonds between the carboxylic acid and the
host are considered to be responsible for chiral recogrfition. ansition stat@b (Figure 1), and thus, a single molecule of
We studied the bonding properties3gwith racemic man- 34 participates in the reaction.
delic acid in CDC} by *HNMR spectroscopy to further prove The generality of catalysBe at catalyzing direct aldol
the existence of hydrogen bonds between the keto acid andeactions of ketones with a variety afketo acids including
the gmmopyrod_lne oBe (Figure 2,_ see th_e Supporting Infor- ot aromatic and aliphatic acids was examined under
mation for details}***The chemical shift of the proton on  4qtimal conditions (Table 2). The aldol reactions proceeded
the stereogenic centers of two enantiomers of mandelic acidsmoothly to generate aldol adducts with a tertiary center in
is obviously different in the presence of stoichiometric higp yields of up to>99% and with high enantioselectivities
amounts of3e (peak a). Enantioselective recognition was of yn to 98% ee regardless of the electronic and sterical

. nature of the substituent of the keto acids. Cyclopentanone
v B0 @ Pu. LChem. Re.2004,104, 1587. (1) (';:')”XJU 272X can also react with benzoylformic acid in a moderate yield
Hu, Q.-S.; Pu, LJ. Am. Chem. So@002,124, 14239. "7 with a diastereomeric ratio of 2:1 in favor of tegn-isomer

Tet(r2a2h)e\c(j?gr?_,A?-%;e:/rvéboé--fg 2l:4agnlg M-H.; Yuan, Q. Fu, E-Q. and 81% ee fomnti-product. The absolute configuration of
(23) Yang, D.?'Li, X_; Fan, Y.-F.; Zhang, D.-W. Am. Chem. So2005 6¢c was determined to b& by X-ray crystallography (see

127, 7996. the Supporting Information). However, tfieketo acid does

Figure 3. Linear effect in theB8e catalyzed direct aldol reaction of
benzoylformic acid (4a) with acetone in toluene.

Org. Lett, Vol. 8, No. 7, 2006 1265



Table 2. Direct Aldol Reactions of Ketone and Keto Aéid Scheme 1. Diagram of the Catalyst Recycling
[e] O OH o}
A . i 1) 20 mol % 3e M‘Cozme Q._/( — | Catalyst Recycling I
(R R™ “COOCH Toluene <] R H HN— Y,
el e 2)CHN, - g s Q y |
{s]
yield ee yield ee Q?:
O"“ﬁ:"t %) product % (% : ‘n? -
OOM o OH o — Na
ALK 99 03 P 78 92 S e
2 2
6a e L Q)\COOH
o o o oH

COOMe
Q >99 93 )K/SCOOMS 85 95
8b | Vi 8f

o OH HCIEtOAC

Q OHCOOMe COOMe
S, 78 93 96 96
6 Ly s o oo, EtOAC
)OK/OSHCOOM& 1 Tkoome gt 20 81 4— )\’K@
75 98 /™

eq Ph &h syn 40 24

Hs0

a A mixture of keto acid (0.5 mmol), cataly3e (0.1 mmol), and acetone
(1.0 mL) in toluene (3.0 mL) was stirred for 48 h at©. ° Isolated yield.

¢ The ee values were determined by chiral HPEQ@etermined by X-ray
crystallography of a single crystal (see the Supporting Information).

the transition state stabilized by the double hydrogen bonds
formed between 2-aminopyridine and both the keto and
carboxyl groups of the organocatal&. A linear effect was

not react with acetone catalyzed By under the optimal
conditions?*

Since the aldol product is/&hydroxy carboxylic acid and _
the catalyst is an organic base, it is very convenient to Table 3. Catalyst Recycling
separate the product and the catalyst by an acid—base

conversion strategy, as illustrated in Scheme 1. Recycling — " recycle yield (%) ce (%

of the catalyst is therefore allowed. After the aldol reaction 1 1st 99 93

of benzoylformic acid with acetone is quenched with aqueous 2 2nd 90 93

NaCOs, the product exists in the basic aqueous layer, Srd 62 89
whereas organocataly§e remains in the organic layer. aThe procedure for catalyst recycling is presented in the Supporting

Evaporation of the organic solution to dryness recovers the Information.® Isolated yield.c The ee values ware determined by chiral
organocatalysBe, which can be reused to catalyze the aldol '

reaction. The aldol product in the aqueous layer was obtained
by extraction after the pH was adjusted to 6. After two
recyclings, catalysBeis still active enough to catalyze the

observed for the reaction, demonstrating a single molecule
direct aldol reaction of acetone and benzylformic acid in of the catalyst involved in the catalysis. On the basis of their

moderate yield and a slightly decreased enantioselectivityd'fferent chemical properties, the aldol product and organo-
(Table 3). catalyst3e were conveniently separated to allow for easy

. . . r ling of the organ lyst.
In conclusion, we have designed a family of organocata- ecycling of the organocatalyst

lysts based on molecular recognition to catalyze the asym- Acknowledgment. We are grateful for financial support
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